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Abstract

In this paper, natural convection inside a two-dimensional cavity with a wavy right vertical wall has been carried out. The bottom wall
is heated by a spatially varying temperature and other three walls are kept at constant lower temperature. The integral forms of the gov-
erning equations are solved numerically using finite-volume method in non-orthogonal body-fitted coordinate system. SIMPLE algo-
rithm with higher-order upwinding scheme are used. The method of numerical visualization of heat transport for convective heat
transfer by heatlines is studied. The heatfunction equation in the transformed plane is solved in terms of dimensionless variables. Results
are presented in the form of streamlines, isotherms, heatlines, local and average Nusselt number distribution for a selected range of Ray-
leigh number (100–106). The results are presented for three different undulations (1–3) with different wave amplitude (0.00–0.10) and a
fluid having Prandtl number 0.71.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Streamfunction and streamlines are very convenient and
being widely used tool to visualize momentum transport of
fluid flow. A less common tool called heatfunction and
heatlines approach are used to visualize the transfer of heat
by fluid flow. An energy analog concept was first intro-
duced by Kimura and Bejan [1], which provides a better
visualization technique for transfer of heat as compared
to the traditional isotherms approach.

The method has been followed and extended by several
researchers in the following literature [2–10]. These heat-
line applications are applied to natural convection with
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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simple geometry and boundary conditions. Costa [8,9]
dealt with the conjugate heat transfer problem with vari-
able diffusion coefficient and harmonic mean functions.
Deng and Tang [10] and Costa [11] have given details
about the consistency of the formulations when dealing
with conjugate convection/conduction problem. Using
streamlines and heatlines method, Deng et al. [12] have
studied a two-dimensional, steady state and laminar natu-
ral convection in a rectangular enclosure with discrete
heat sources on walls. Later on Deng et al. [13] have
investigated the characteristics of the airflow and heat/
contaminant transport structures in the indoor air envi-
ronment by means of a convection transport visualization
technique. Based on the governing equations, the fluid,
heat, and contaminant transport processes are respectively
described by the corresponding streamfunction, heatfunc-
tion, and massfunction. Numerical results have been pre-
sented by the contour function lines, namely, streamlines,
heatlines, and masslines. Costa [14] has given a review of
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Nomenclature

g gravitational acceleration
H height of the enclosure
J Jacobian
L length of the enclosure
n number of undulations
Nu Nusselt number
p dimensionless pressure
Pr Prandtl number
P, Q grid control functions
q1, q2, q3 geometric relations between coordinate sys-

tems
Ra Rayleigh number
S source term
T dimensionless temperature
DT differential temperature, dimensionless
U, V dimensionless contravariant velocity compo-

nents in n and g direction
u, v dimensionless velocity components in x and y

direction
x, y dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity
n, g dimensionless curvilinear coordinates
/ general variable representing u, v and T

k wave amplitude
U heatfunction
w streamfunction

Subscripts

av average
c cold wall
h hot wall
l local
max maximum
x, y, n, g derivative relative to x, y, n, g, respectively

Superscript
* dimensional form
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the Bejan’s heatline and massline approach for convection
visualization and approach.

Recently, Dalal and Das [15] have studied natural con-
vection in a cavity with one wavy wall of different undula-
tions. The bottom wall was heated by a sinusoidally
varying temperature and the other three walls are main-
tained at cold conditions. In the present work, the heat-
function equation has been modified and solved for a
complex geometry. The visualization of the transfer of heat
for the convection at Rayleigh number 100–106 for one-,
two- and three-undulations have been done. The amplitude
of undulation is varied from 0.00 to 0.10.
L
0 0.25 0.5 0.75 10

Hotwall

Fig. 1. Flow configuration and boundary condition for three undulations.
2. Governing equations and boundary conditions

The geometry of the two-dimensional square cavity
with wavy right vertical wall filled with viscous fluid is
shown in Fig. 1. The bottom wall temperature is considered
to be spatially varying with sinusoidal temperature distri-
bution. The other three walls are considered to be of
constant temperature. The expression of the wavy wall is
given by

f ðyÞ ¼ 1� kþ k� cosð2pnyÞ ð1Þ

where n is the number of undulations. Three different cases
with one-, two- and three-undulations are studied. The
wave amplitude (k) for three cases is varied from 0.00 to
0.10. The fluid considered in this study is air (Pr = 0.71).
The Rayleigh number is varied from 100 to 106.
The details of the nondimensional governing equations
in the physical plane and in the computational plane
(n,g) are given in [15] along with the boundary conditions.
2.1. Heatfunction equation

To visualize the transfer of heat by fluid flow, an energy
analog concept, heatfunction and heatlines, was introduced
by Kimura and Bejan [1] which provides a better visualiza-
tion technique as compared to the traditional isotherm
approach. The dimensionless form of heatfunction, U, in
two-dimension is defined as [1]
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Fig. 2. (a) Comparison of Nuav on hot wall; (b) comparison of Numax and Numin on hot wall.
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oU
oy
¼ uT � oT

ox
ð2Þ

� oU
ox
¼ vT � oT

oy
ð3Þ
Eliminating the temperature gradients of the above equa-
tions by cross differentiation, a Poisson-type equation is
constructed for the heat function.
o2U
ox2
þ o2U

oy2
¼ oðuT Þ

oy
� oðvT Þ

ox
ð4Þ
In the transformed plane (n,g), equations of heatfunction
take the form
Ug ¼ UT � 1

J
q1T n � q2T g

� �
ð5Þ

� Un ¼ VT � 1

J
q3T g � q2T n

� �
ð6Þ
Eq. (4) is then transformed to computational space
Table 1
1

J
ðq1Un � q2UgÞ

� �
n

þ 1

J
ð�q2Un þ q3UgÞ

� �
g

¼ f�xgðuT Þn þ xnðuT Þgg � fygðvT Þn � ynðvT Þgg ð7Þ

Average Nusselt number for Ra ¼ 105 and k = 0.05

Grid size 1 Undulation 2 Undulations 3 Undulations

101 � 101 �0.816965 �0.733817 �0.688565
121 � 121 �0.815491 (0.18%) �0.735125 (0.18%) �0.695717 (1.04%)
131 � 131 �0.814386 (0.14%) �0.735526 (0.05%) �0.695768 (0.01%)
The boundary conditions for the heatfunction are derived
from Eqs. (5) and (6). The left corner of the enclosure is ta-
ken as the reference point and its value of heatfunction is
taken as zero.
Left wall U ¼ 0�
Z y

0

1

J
q1T n dg

Top wall U ¼ /ð0; 1Þ �
Z x

0

1

J
q3T g dn

Right wall U ¼ /ð1; 0Þ �
Z y

0

1

J
q1T n dg

Bottom wall U ¼ 0�
Z x

0

1

J
ðq3T g � q2T nÞdn

ð8Þ
Eq. (7) is solved for the heatfunction with the boundary
conditions given in Eq. (8).
3. Code validation and grid independence study

The governing equations are discretized using staggered,
non-uniform control volumes and these equations are
solved numerically by finite-volume method. The semi-
implicit method or pressure linked equation (SIMPLE)
[16] is used to couple momentum and continuity equa-
tions. In order to minimize the numerical diffusion errors,
the deferred QUICK scheme of Hayase et al. [17] is
employed in approximating the convective terms for both
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Fig. 3. Streamlines for Ra ¼ 105.
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the momentum equations and energy equation. The central
difference scheme is employed near the boundary points for
the convective terms. The mass balance for global conver-
gence was taken as 10�6.

The present code is validated with the numerical results
of de Vahl Davis [18], Markatos and Perikleous [19] and
Hadjisophocleous et al. [20] for the buoyancy driven lami-
nar heat transfer in a square cavity with differentially
heated side walls. The left wall is maintained hot while
the right wall is cooled. The top and bottom walls are insu-
lated. In the present work, numerical predictions using the
developed algorithm, have been obtained for Rayleigh
numbers between 103 and 106 on elliptic mesh with
61 � 61 grid points. Fig. 2a shows the comparison of aver-
age Nusselt number on hot wall. Comparison of maximum
and minimum Nusselt number on hot wall is shown in
Fig. 2b. Comparison of the results is also given in Dalal
and Das [21]. The results are in very good agreement with
the benchmark solution. The grid independence test was
performed using successively sized grids 101 � 101, 121 �
121, and 131 � 131 for Ra ¼ 105 and k = 0.05. Table 1
shows that for Ra ¼ 105, there is less change in Nuav on
the wavy wall from 121 � 121 to 131 � 131 than from
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Fig. 5. Isotherms for Ra ¼ 105.
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101 � 101 to 121 � 121. So a grid number of 121 � 121 is
chosen for further computation.

4. Results and discussion

A parametric study has been carried out to determine
the influence of Rayleigh number on the flow field and
effect of number of undulation on heat transfer. The results
are for Rayleigh number of 100–106, Prandtl number of
0.71, and undulation amplitude of 0.00–0.10. The discus-
sion of the following results concerns the streamlines, iso-
therms, heatlines, local Nusselt number and average
Nusselt number distributions on the walls.

4.1. Streamline, isotherm and heatline distribution

4.1.1. Effect of wave amplitude

The streamlines for different amplitude are shown in
Fig. 3. As the amplitude is increased to 0.10, the size of
the right cell increases and the left cell is squeezed to a rather
small fraction of the domain. Because of the direction of
motion, the right cell has negative streamfunction values
whereas left cell has positive values. Fig. 4 shows the max-
imum and minimum stream function distribution for
Ra ¼ 105. As k is increased, for one undulation, the wmax

value (left cell) decreases followed by a temporary rise at
around k = 0.06 and finally settles to a lower value at
k = 0.1. For two-undulation case, wmax remains constant
upto k = 0.06 and then decreases. For three-undulation
case, wmax continually decreases. The wmin value (right cell)
for one-, two- and three-undulations initially decreases and
then is adjusted to nearly the same value as of k = 0.00. It is
to be noted that the wmax has same value at k = 0.1 for
the three-undulations. The same trend is observed for wmin

also.
The isotherms for different amplitude are shown in

Fig. 5. Because of the change in the relative size of
the cells with k, the isotherms are observed to have
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Fig. 6. Heatlines for Ra ¼ 105.
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a skewness towards the left vertical wall as k is
increased.

The heatfunction contours for different undulations
and amplitudes are shown in Fig. 6 for Ra ¼ 105. With
the increase in k, the U values are coming down within
the domain. For example, on the right wavy wall, the
maximum U value has come down from �4.2 (k = 0.02,
Fig. 6g) to �3.8 (k = 1.0, Fig. 6i). So the Nuav is
decreasing as k is increased (Table 3 of Dalal and Das
[15]).
4.1.2. Effect of Rayleigh number on the heatline distribution

Fig. 7 shows the heatline distribution for one-, two- and
three-undulations. The Ra is varied from 103 to 106 and the
amplitude k is 0.05. As has been discussed by Deng and
Tang [10], average Nusselt number Nuav is given by the
heatfunction values. To ensure the accuracy of present
calculation, the following comparison has been done. For
the bottom wall, Nuav ¼ 1:45. From heatfunction plot
(Fig. 7a), the value of U at left corner is 0.0 and at the bot-
tom right corner is �1.4424. So Nuav ¼ 0:0� ð�1:4424Þ ¼
1:4424. Similarly for the right wall, Nuav ¼ �0:669581
(Table 4 of Dalal and Das [15]). From heatfunction compu-
tation, the U ¼ �0:76155 at the top right corner. So
Nuav ¼ �1:4424� ð�0:76155Þ ¼ �0:68085.

It is observed that with the increase of Ra, the magni-
tude of heatfunction is increasing which implies that the
amount of heat transfer is higher (Fig. 7). However, for
any particular Ra, it does not change significantly and thus
there is no noticeable effect on the heat transfer rate. The
heatlines rise as a plume and move in closed vortices as
the Ra is increased.
4.2. Heat transfer distribution

The effect of different parameters (i.e., Rayleigh number,
undulation and wave amplitude) on heat transfer is
described from Nusselt number distribution.
4.2.1. Local heat transfer
The local Nusselt number distributions on left, bottom

and top walls are shown in Fig. 8. The Nul distribution
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Fig. 7. Heatlines for k = 0.05.
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on the left wall (Fig. 8a) has similar feature to that of on
the wavy wall (Fig. 5a of [15]). For Ra ¼ 103, the Nul dis-
tribution on the bottom wall has one maximum location
(Fig. 8c) (because of conduction mode of heat transfer).
However, as Ra is increased to 105 and above, two peaks
a little away from x = 0.5 are observed because of the sinu-
soidal boundary condition and thermal boundary layer.
For the higher Rayleigh numbers, the recirculation inten-
sity increases and the isothermal lines are concentrated
near the middle region of the top wall which produces a
peak in the local Nusselt number near the middle region
of top wall of the enclosure (Fig. 8e). It is observed that
the number of undulation has a minor effect on the Nul dis-
tribution on the left, bottom and top walls (Fig. 8b, d and
f) respectively.

4.2.2. Overall heat transfer

The average Nusselt number distribution on left, bottom
and top wall is shown in Fig. 9. Increase in k and number
of undulation has a beneficial effect on the Nuav for the left
wall (Fig. 9a–b). However for bottom and top wall, Nuav

decreases with the increase of k and number of undulations
(Fig. 9c–f). This is due to the interaction of the convection
current with the complex geometry created by undulation.
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5. Concluding remarks

Buoyancy induced flow and heat transfer inside a cav-
ity with sinusoidal temperature boundary condition on
the bottom wall and constant cold temperature boundary
condition on other three walls is investigated numeri-
cally. The heatfunction equations have been numerically
solved in a complex geometry formulation. The basic
characteristics of heatfunction/heatlines are useful for
perceiving the visualization results. The visualization of
heatlines exhibit the convection of heat by fluid flow. It
has been shown that the level of heatfunction lines are
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Fig. 9. Average Nusselt number.
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a direct measure of the heat transfer and it has been val-
idated by examples.

The heat rejection by the left and the top wall increases
with Ra. The heat addition by the bottom wall increases
with Ra. The heat transfer process is slightly affected by
the presence of undulations on the right wall.
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